' preserveAspectRatio='none' x='195' y='518' width='631' height='207' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAM8CdwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsjbQAhGDQAUAPoAY9AAGwKAEY5NAD16UALQAUAFADGGc0ARleaAF20AG2gAAxQBJ/DQAo6UAB6UAMbpQBH3oAevSgBaAHg8UAIcd6AEJUDNACg7qAHUAFABQAUAFABQAhGaAGleKAE20AG2gByrigALYoAQtxQA3dQBIOgoAWgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAG7aAFHAoARxmgBu2gA20AOC8UAIUBoAQoBQAxloAFWgB235qAJAMUALQAUAFABQAUAIQDQA3vQA%2BgBj0AR85oAcAaAHgjFAC5FABQAZoAQEZNABhSaAFwKADAoATaKAFwMYoAWgAoAYVoAaUoAADQA7BoATBoAQqSM0AJ5ZI60APRSo60ALk9qAFGe9AAc%2BtABz3NABz60AIN2eTxQAtAAc0AHNAC0AIaAEK5oAQpx1oAb5ZoAcCQMUAGTQAZNABk0AGTQAZNABk0AGTQAZNABk0AGTQAZNABk0AGTQAZNABk0AKCc0AOoAKACgAoAKACgAoAKAGscUAJk0AOHSgAxmgAxQAFQaAAACgAxQAtABQAlACEnNAAD60AOoASgBrcHNADgc0AIVzQAgSgBxHFAEbZFADdxoAfuNAByRQAm0560AKAcigCSgBM%2B1AAKAFoAKACgAoASgAxQAtAEUsyRqzPwF60ARrdK8RkjUsO3vQAon3cKOMjDA5FAETSucgBsrgkbT3oASGWYsy9XXqKAJhcKhCysiuegLDJFACSSMzoEBA7k0AOeUhRlcHnqfSgBN74PynIHSgAMrNwgDEehoAQu6k84AOM4oAR3k8svzj2FAD0kIJVx3wM8ZoAlDA0ABPHHNABk7eKADJwKAF59aAGnrQAUAFACUAFABQAtABigBdtABtoANtABtoANtACUAJQAUAKOtADhzQAtABQAUAFABQAhOKAEDZoARmoAbmgADe1AD16UAKTzigABzQAtABQAUAIelADc0AJmgBrE5oAkY4oAbuNADdwPGaAJAQBzxQAB0OMMOelAChgTgGgAzQA1sHjPNACbfagBwANAC8CgA4oAMUAGRQAxpMHpQAglBPUUASKcigBaACgBMjOM0ALQAlAASAMk8UAZ99lrW4EBAYK2O%2BWIOP1oA%2Bb9GWSDxVB4e8ZT32h%2BIn1JbmwvhMWguIxNu8rHHVRjr3oA9Xn8R6ZpfiLxLcz3F4zaXaC5vYtw8oKAThRjOcD1oAlg%2BJ2iy3NvayafqsUtxbtdW%2B62wGjXGe/vQBBJ8XPBUOkabqcuqSRw6jn7KNvzHA5zQBQ1n4jQXttoeq%2BFrlLnT7vUhY3JkiyxznkHPHIoA65PGXhy319tBn1e1jvy3yRGTLfT60AZ/xh8Z3Xgrwlca5bWSXhidQFz1B//VQBWs/iFZT/AAog8cK26NrP7SV3c7z0X%2BdAFv4ceLpfEvhbTtevoIbQXMJfAbhQcY/nQB2D3CCFSHQ5KgZPrigDBvPEkNv40i8OOFae4s/PT5sAgM2f0FAFjUvEFtZ6tZaaRLI96sjIY13Bdu3/ABoA108kKD5vXpz1oAk3JECSw4GTk9KAM7Xdf0nRYorjU7%2BC0jmYKrSNgE9hQAui67pWsFjp1/b3QU4PlvnmgDVoAMUAGKAAjigBuD6UAGD6UAGD6UAKOOtAC8UALQAUAFABQAUAJigBCOaAExQAlADgRigBcigBaACgAoAaxoAjZ%2B1ADUbrQAjMetAEkXzc0AOAANADsigCOU46daAGxswPIoAmBB6UALQAUAIelADcGgBtABigAZqAGJln9qAJdoBz%2BdAFe6uo7e2a4klSGNepc4FAEE1/bQWz3RnVYhgAu4Ckn0NAF2BgYVIK4I4wcigBckn5WBFADh7kZoAdQBBOXCDy%2BvegB2XZARigBy7gPmIoAUkY60ARs1ADY2WQlT2oAesa5%2BlAEgwOBQAtABQA0kA5NACb1PGcUAGVPG6gAcbl20AZ91bCa2lt2aQBgwDZzyemPp6UAeSaz4C8Xat9j0jUtYtbrTbO%2BW6jn8jZMm1w%2B3aMgjAxndQBpa38P9Xu77xbeLcQSLrGjCygj3nO4BuSMYGdwHWgCsfDHiJNc8JTR2cH2TT9Pmtb8MeVJ242%2BvSgDyy/03UfB2pfDfT9R0uGe%2Bi1edlRsHcjI2FU9hQB3R8HeJ5IVu009baWfxFHeSW0rZEcIznGPagDP0Twy9r4qu7XxB4a1i4km1Zru0vIZAY9oIO1ueBgUAeg/FvzIPB9lALHzlTULdmgQZGwE7s%2BvFAHBWPhHXNMu/EPh1IIpPCNuralb8fM0jqwEYGPujmgDnvDT2Vv8LPB%2BiXkV2r5Kfvt3lhgpH3ADz6UAWfC%2BsC0udFtddv9Vg04NdRRvGGJMglkwrDjA2YI69qAOi1PTdJ1Dxr4ctLXUrtUlsZ1S7fiQjLEq3pjP60AZemeI9VWf4dgXk4iuLqezuCsoHyjb8xOaAKnhvxbrltexag%2BsXs0EXiubSxaNOfKMIWUhvzRe3egDofDureNvEnim31a1uNNjsf7Umtbi2MxDLEhcZAI7lR%2BdAGh%2B08lza%2BEtLvLMRtcrr1k0TOfuN5qDGPTjn2oAxPCCzwftH%2Bbq0I0ky6QsdlaQNmO42li8h9zuH5UAfQTGRgPL4%2BtAEy52jPXHNAC0AFABQAUAFACEZoAMUALQAUAFABQAUAFABQA1qAG0AFADhyBQAooAKAGO%2B2gBqSq1AD%2BD2oAXCntQAhVcUABXC8UAIN%2BOooAOR96gBomjY5PagBSQ3SgBnz7%2BOlAE46UALQAUAI3SgBlABQAbcr0oAIlx1oAWTHAzg5oA8x/aVEh%2BDviSeK6eCS3sZXUqSDkKT25oA8p8aa/Pefs8afa6hZ6xYzoIW%2B0YZhIDnncucfjigD0lfHdpodnBolhaX2pvp9hHLcxRcusZAwSx6k%2BxoAtXvxKtLXTW1BNM1SK1jtFu5nmiKBUIB25PcZ7c0AbFt47spde07TJYJoo9TsheW900iiJlxnaOdwPHegCnf8AxMtbKfTYdT0y/tLfUboWsF25Xyt5OFyVOcUAdRomu22r3N%2BLUs0VrIYpGzxuHpQBwuofG7wbY61PpckuoCe2lEM5%2BwTtGhJ7sqlR%2BJoA3dT%2BJPg%2Bw1C3trvV2US7FVhBKy/PjaSyqVXqOpFAF7XfF3hvS54LbUtUS3MuSVDsSAcYOV6fjQBi6Z40uz8QNX0jUZLZLCytY5o5VO1W3k4G5uM8UAdIbi6XXrRYZ4DZTRM0qmRd%2BR90j1GM5IoAuRavp73P2aPU7NpG4CCZS%2BfpmgC0t5aq/wA13ACDjmUfe9DQBP5mVLhhjuQcigCPcyxqQ/IXOWzzQAokV1XcfmI6ZIJHegCOR0iQs7ZTtjPT/GgCWAK207hjqoyc0AT5bdjHFADXKbs4GfpQAqqgXhRjuAKAGiJC%2B8FumMZ4oAbJArd%2BlAHFfEaXwrZyaPd%2BI7VZ3%2B1pFYv5eXWYg9D1HANAHaxomTI2WL8c9vagByxIhwBnPHPpQA6SGGQYkiRwOcMoNAEYtYwxO1cMMEY6j0oAYdM00hc6fakJyuYV4%2BnFAEV1pOnTIqvp1o4VtwDQqcH16UAJJpGmG4jnOmWZlRSofyF3AHqAcdKAKreFfDZMI/sHTAsBLRKLVAEJ6leOD9KAKsng3w48Swro1lGqXJuhtgUYc5yenXk80AVofAnh6HXDrEFkkdwW3sc4BPXpQBH8S/BejeNNIjsdYWd44pBKht53RlbjBBUg9qAKnhH4b%2BH9C12HWYmu73UIovKSW9uJJjGncKXJwaAO8oAWgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAEoACBQAmKAFFAASAM0ARNKTwFJBODQBXuJoU%2BWSQhR0PrQA6JrdOPNVT6MRmgBLm9tbfiW7t4s9C8gFAFGTxDocL4m1mwRh/euFA/nQBWn8ZeE4v8AW%2BKtDjb0OoQg/kWoAzrv4leCLVWafxVowjHUreox/JSaAMKX46fCu33f8VjZDaech2/pQBj6h%2B0h8JbX95/wk3mt0xFbyt%2Bm2gDHvP2oPhhFG81tcX91t%2BY%2BVayKMe%2B4AUAbXw//AGgvAvi7Vl0yzmmspJDiNbtSpkJ9KAPYULeYwAwAvHvQA9eABk0AOWgB1ACUAJigBQKABRgUALQBHIuWU7sc0Acf8VPDMnjHwffaJFeG1W7iaKRguSARjgUAYHiXwNqup/B6LwgNQhFzHFGpuDEduF9vWgCrqPgXxbYa/Fr/AIY1XTY554ootRt7y1Z4pgi4yoUhh64zQBF408BeMtZa%2BaHXNOW2vLA25tGtZGQP6jDcCgBdU%2BHGp6n4V8Nabe3NtHe6O0ZeeHKAx7sOOTn7o9etAF74wL4cPgZdEubi3hlLL/Zy%2BYobz1%2B6Rn60AdL8PNF/sbwZYWd0we4SNWuHI275McmgDyXTk1HW9Z%2BIGgWegyTtf3ixrdkAJDgdSQMdvzoArfEjw34lufDt54ZtNBkvbZoLRIrm1Q5LRBN5JHLHKnpQBe0RrvR/E11H4i8M6hqtrq8cRh22pdbRUQKVfjcuSDyTQBmeP9G1uH40Ta5pGnXFzpdna28l1YNE5E4y33O3H49aAN7xrcS3Xxm8L31vaX0FoNDu1lXayqHyhUEDjOAaAOC8O6ZJb%2BHvDviaHTb6PVZfEcq3MrGTcIBOwGQTjG3HagDd1CbTpvFet%2BH7nxLb2d62sRXUEsl2qqYdsZI2k5HIYUAen/GHVr7w78OnudJVndHiSVxk7YznL59sfrQBz2r6n4f03R77V7Hxnd3VpdBY47WCdJdjMR0IBI/E0AZsWqeI5dN8S6Z4fv3lubE209onmLJM0ZCmRc9ATk4GOtAFfUfHWqXumaPoukXN697qd1JHcozxxz22xMlfmXGcg84oA9D%2BFc3jAaJ9g8VxQJfQyvh4yGJj427iOMnnpigDvRnYFJ5PcUAAHYjOO9AD8fhQAHigBshwpx6UAeT/AB7ZFtfB7SnP/E8hzkdP3cnNAHqyHG4YHFAEmM0ALQAmPegBaAGtntQAzMmcUAKN4HrQAAPQAu3cvzd6AEZBkMByBxQAkQPpgZzQBLQAmaACgBaACgAoAKACgAoAKACgAoAKACgAoAaTg0AG40AOoAKACgBGGRigCOWP9wyKcEjANAHzn%2B17rfiPTo/Dmh6HqMunvqNx5LzJjdjjpQBFpP7NmqTQJLqXxO8UFiuT5c4BH0yKANCf9mDR7qMfafiJ43nPpLeIMfkgoAfa/sseCEX/AEnxD4muivJ33uc/kKAL1j%2BzN8MomZ2t7%2B5PrNMSRQBqRfs7/CtGVl8OwMw6l5ZOfwDUAadv8DfhfGfn8I6Y%2BPUyf/FUAaVj8I/hvZyB7bwjpy45x5ZIz%2BJoA2H8FeEhHtXw5pYGMY%2ByJjHp0oA8h/aT%2BFtldeFTr3ha2isda0eVbuEQRqgdB1XAHPagDrP2dfiCPHvgWGSdtmr2Tm3vYm4ZHGRyPwoA9Qj37cvg/SgB6HJ4oAcTigAHSgBaACgAoAQnAzQBG0ingde2RQBG8RAJLkk9CB0oAb9njcncilD2xzQAbA8hyDkHhhQApt/3omOwsPb/AOvQAyTOCm07SMYHFAFPUdDsL%2BSKe7t4p3gkEkBkTPlsKAL/AJTYAbqp4J5z%2BFAGTpXhrTNL1K81DT7OG3ub5g9xKoO5z784/SgDVkgVlUyANtOaAIljRmxGmAPlAPTHr/8AWoAVLCPO54UJY5PPK%2B2e4oAle0R23PGhbGASPucc4oApyafGsKQmGIgtwMAYI7j370AcHD8Pbtbi5Go3FnqtrLI5QXNriVUPOCwPPJOOKAO9m09LmyW1lijljCbcOMrjH3cenFAGLH4J0CfRZ9Jk0m3FncP5ksRX5d2eMelAEMfw68KRzTyLoduJJtgZ1LA4TG3vzjAoAr%2BJvhxoGuWENhNZvAkM/nJLE2HVupI%2BvSgDa8MeG7PQbJ7Sz88hz8zyPuNAHQKhVAuc470AOAxQAtACGgBsgJHFAHj37SgxoHh1lOHGt2%2Bz/vl6APXYGEiGRc4YAjP0oAmU5FAAeBQACgBaAGknIxQAvNABz6UAHPpQAUABz2oAOaAFoAjJOTQAq5IoAUZzQA6gAoAKACgAoAKAGE80AGaADNABmgB9ADG60AFAD6ACgAoAKAGucDOO9AHzZ%2B2IN2p%2BArhm/drqfzMfwoA%2BhbVo2tYpDGSWUDOOOlADyquRtOV7EGgB25Y2C%2BaoPuetADnuIVxunjTPqRQA03toODcRH6MKAILnWtJtf9ffW8Xuzj/GgDPk8Z%2BF1k8ttesVb0MooAoaj8SPAtirfa/FmmR46gzCgChpHxH%2BH/ii5XT9M8S6dfzs2GijkBJB6qR%2BVAHhfxSsNR%2BCnxdtfHWhh/7B1RyNSgX7qsx%2B8R25oA%2BmdA1m11bRrTVbCdZ7e5jV1ZTkcigDWSQNzj8R0oAkPIoAB0oAKAFoAKAEPPFADCgzmgBxwRzQAjMFFAAjKeR1oAWgAwpPSgAJHTFACSdqAAEYxQABeST0oAa20cjtQA5GzQASNtxQBkeNJJIfDGo3ULFJbe0llRh2ZUJH8qAKXw31C61Pwhpl7dv5kk0O52Prk0AdLkdqAI3YlxtbigCQZznNABnnrQAD60AOoAKACgAoAQ9DQB5D%2B0lEZfC2hlesesW5/Rh/WgD1qLAj2r0Ax%2BVAD4%2BlACt0NAAvSgBaAGnqKAFoAWgAoAKACgBKACgCM9TQA9OlADqACgAoAKACgAoAKAGHrQAlABQAtADqAGt1oABQA49KAEzQAZoAUHNADZMYwehOKAPnT9tdYovDPhiXoIdagUH/AHs/4UAdD%2B1D411TwR8NhfaRIySzOlpFKOAGYE5/SgDzrwz4D/aA1XSLLUIviAkMV1bxzqCW4DqG/rQBtf8ACnfjVeALf/FQID12b91AEifs6eLZF/034v8AiElvvBWJH/oVAFiD9mK0I3ah498Q3r98tj/2agB5/Zb8I3QIv9Z12cDoGm2/yY0ATad%2Byj8L7ecSXVrqFwBzh7pmB%2BuaAOjh/Z5%2BFNsoW28NKpYbd2QcfnQBxHxl%2BBPh7TNGXxP4DsYNL1HS/wDSW8pdrTY7cCgDoPAevaF8cfhQ%2BiaqpOoeQYry3cDfDKox5v8A31/OgDj/ANm/xJf/AA/8a33wl8WXJTynP9l3D/dlXqMUAfT9v8oOQMtzx0NAEgkG4D1oAkoAY5wKAIvM96ALFABQAUAIelAETrmgBqpg0ATL0oAdQAUAIRmgBoXmgB3QUARumecUAIq0AJKmVHsaAMnxk5/4RXWVH/QOn/8ARbUAY/wZcn4aaJntAf8A0NqAOyYbhQAiJtoAfQAjdqAHUAFADR1NACk4oAZv5oAeDkZoA8r/AGiAy%2BC7a5T70epwSL9CSP60Aem2pxaKx64yfrQBLEcrmgAZwKABW3UAPoAQjNAABigBaACgAoAa1ADaAEoAeBxQAoGKAFoAKACgAoAKACgAoAKAEIzQAmKADFABigAxQAoGKAA0AJigAxQAAYNAEU3XHrQB8%2B/tywI3w/0SY/wa3Af/AEKgCj%2B228tz8EtIeLlRqMLufRTG3%2BNAHtnwrkeX4e6EJSCE023Cn28taAOlkhSRg56igBdgbg9BQA4KB0UUALtHpQAoAHSgBH6D3OKAKtxDHOskboDEOHUj71AHyz8R9IvPgl8VIfiFoMMjaHrE7RapCo/dwF2zux2GaAOi/aG8Gx/EHwbY/EHwTcB9X0xVntngbmcDrj6c/lQB337OvxHg8f8AgqCWdo01eyHkXsJ4ZXXjp70AemoF3ZHIz%2BRoAHLBuKABgWHNAETJg0AWqACgBDQAnNAC4HpQAYHpQAUALQAUAFABQAhoATnvQAuB6UAI3SgDE8YLnwxrPvp8w/8AHDQBj/BgY%2BGmjKeoib/0NqAO0HSgBaACgBDQAzcc9aAFyT0oAcKAGvQBH3oAkXpigDzT9oLaPBEHPy/bIAf%2B%2BxQB6LAp%2ByKM5zzQBLEMLigBsgyDQARcdaAJqAEPAzQAzzRuxQA4MDQA6gAoAa/agBmaACgCQdBQAtABQAhNAAKAFoAQ0AGPegBaACgAoAKACgAoAKACgAoAKACgBP4sUARSf6xR7igDwj9uSDf8I7WUdU1e3IPpw9AGR%2B1J%2B/8A2ZreYDcxW1Of%2BAgZoA9f%2BCUpm%2BFXhvePm/s%2BFT%2BCAUAdjsO7OeKAFYZHFACKGHpQA/PvQAEntg0AJyeoFADCP3uD0oAwPHvhzT/FnhPUPD%2Boxr9mu4jFuxkoeob8CKAPnf4Ea1e/DPxpc/CHxTMxt5JJH02eT/lpEQcAelAFHxvpl58EPjRD440kM/hnW5lW9th0gY4Gf6/jQB9SaLqEGpaZBqFrL5lvcKJIn/vA0AanYGgBcCgBCqnqKAHUAFABQAUAFABQAUAFABQA0tigBFbJxigB2ecUAIW5AAzQA6gBCM0AZfiiMN4b1RCcbrOUdP8AYNAGD8Hsf8K60pgf%2BWbjH0kagDsQeM0AOoATPzEYoAKAI2FADo%2BKAH0ANYZFAEZGDmgB44XNAHmX7Q4A%2BHRYDlLuBs/8DFAHoujuJNNgcHO5AaALWOTQA0r70AN20APBAAyaABmA4oAjkxtyFNAAkkYXO6gB/mpjJOKAEEqt9z5vpQAMSQOAPxoAac4O0ZNAC4fjge/NADwePpQAA%2BxoAXPsaAEK570AMBYdQPzoADLg9B%2BdACed7frQACXnpQBIGBHUUALmgAFAC0AFACUAGeehoAM80AIXA9aAFBzQAZ9qAGs3YdaAGbwvLZ%2BpFAHhv7beZPgeZUIAj1K3fJ44w9AGX8cFjvP2QllLDzRpVpImf4mJj5/WgD0X9nieVvg54babb5otFVst6cf0oA72aZSVHmxrjr81ABJeWiJ81zEPX5xQBA99YBdxvoAP%2BugoArPruhopLapbDHUmUDFAGdP478G2wJn8RaemDg/vgaAKFz8VPh3bkCTxdpqH/rrQBn3fxw%2BGFqS0/jDSlT1EuT/KgDGvP2iPhPEGkXxNDcfLgeUu7jvQB4h%2B0x8SPhn428OQ6r4avrv/AISSwlja0aKDDONwBUnPQDJoA9u8L6JN8TPgHYWniqARXl7bbnO3O1hkA898AUAcn%2ByJrV5Be%2BIvh5qdzNLP4duNsRkOfkbOB%2BG39aAPo0c4FAD6AEP0oAWgAoAKACgAoAKACgBCaAGlsdaAI2JoAWI85NADmbnAoAEKDoc84oAfkUAGRnFAGZ4nI/4R/U%2BelnKT/wB8mgDnPg78vw50rJx8r9f%2BujUAdoCNuKAB2xQAx5Cozg0ASI25QaAFIzQAUALQAh6UARvx1oAf1SgDzb4%2BqjfDa6Un/V3EO72%2BcUAd14eXZo9upP8AAD%2BBoA0KAFoASgCORd3JOMUANZx/Dt3YwpPrQBxHxA%2BJ/hfwNZx3PiO6eDc20bQST64oA41f2lPhIX8v%2B2phk4PyN1oAt2/7RXwnPH/CQPt9Wjb/AAoAtR/H74Sycp4pgUH1Vx/SgBw%2BOnwiZ/8AkdbYt/dKyf8AxNAF20%2BNvwwmOF8X2KD/AGi3%2BFAFs/F34fswEHinS5EPU%2BZj%2BYoA1Lb4heC54w1t4k018jP/AB8KP5mgB/8AwnPhPOf%2BEh073/0pP8aAJ4vG/hFj/wAjJpY%2Bt2n%2BNAEw8Y%2BEz08S6R/4GJ/jQAh8T%2BFX4HiTSf8AwMj/AMaAD%2B3/AA9/B4h0gr73kf8AjQAn/CQaB/0MOkD6Xkf%2BNAB/wkGgf9DFpP8A4GR/40AOHiTw%2BBj/AISHR/8AwLj/AMaAFXxNoHfxFpOP%2BvyP/GgBw8V%2BGd20%2BItJJ/6%2B0/xoAVvFfhhThvEOlD/t7T/GgBjeMPCg6%2BI9K/8AAtP8aAK8njbwmn/Mw6cfpdJ/jQA1fHHhU9df04fW6T/GgCCfx54KQ/vfE2mqPa6U/wAjQBXl%2BJngKAAjxXpjD088GgDPu/jN8MYSRJ4wsN4/hDMf6UAVD8dPhQv%2Bv8a2UPoMSH%2BS0ART/H74RRrkeMrNz2xHJk/%2BO0AZ8n7Q/wAI8Nu8UDIHaN/8KAPKP2jvjT8PvGvwt1Dw7oOrSz3ZdXjSRDhiM9CfrQB6jo3ha28f/s0eHtAu2MX2zR7ZUf8AulUUg/pQBwuifs%2BfFGwsYdOg%2BKc1pYxf6uOIvlATnFAGnP8AAT4guqpcfGLxBIP4Qi5A/NhQBD/wzPrlyc6l8UdcnJ7lf6bqALdv%2By5pka5uPHGvSt6q5T%2BTUAWI/wBlrwPcc6jqus6gfRrt0/UHmgCeP9lH4TA7rjTdQlA/vajIaALtp%2BzT8H7X/mXmlx2luGYfqKANvTPgR8K7PmDwfp7D0lQN/MUAay/B/wCGitmPwZoaD0SyQf0oAv2nw98E6ZETaeGdMhHTH2ZfxxxQB0FnaxWtotvDFshwQEHp7UAfO3wJk2ftTfEqH5SsrrIOOR14oA%2Bl4%2BelAD6AGlhQA6gAoAKACgAoAKACgBjDJwKAAADrQA11oAYVY8LQA5sRxguSMnH50AZPibXdK8P2f2zU9QtbK3Vtm6Zwo3HpyaAMOH4oeASyoPFujM7dvtsX%2BNAGnB438JTqfL8SaUR6i8j/AMaAGa74g0N9Fumi1rT5QbeQDbcoc/KeODQBi/CrUNPTwHp0N1qdiJgHZ1M4GAZWI7%2BlAHaJd2r4kS6t2jA6pKCP50AWI5UkGY3Rh/snNADVlQzCMFiT6jigB0LqzsA6Ejsp6UATUAFABQAUAMkGaAAnatAHn/x0QP8ADbUZD91fKkf8JUH9aAO10khtMt2HQwoR/wB8igC6P6UALQAUARSnBxQAzaFIOBk9z2oA%2Bbf2orO1uvjJ8LbC6gjktLnVVjnVwCjqXUHIPBoA9en%2BHfggww2x8H6AY1A3SLp0W4/jtoAi/wCFR/DRBj/hEdM/780ART/CD4Z3EflP4O00L/eWAZ/PrQBj3X7P/wAJ7nK/8ItCjdiGkH9aAKD/ALM/wokIDaDg98TSD%2BtAFdv2WfhIZNx0WYewuZf/AIqgCO5/Zd%2BF0g2/YrtFH3Qk8nA/OgChL%2Byr8NUOQ2oIPTzGP86AKs/7JXw6ufmF3qS%2Bwc0AQn9kH4e9r/VB/wBtGoAVP2RvASt/yEtT/wC/jUAWB%2ByX4DA/5CWqf9/yP60AL/wyV4CPXU9V/wDAg/40AIf2SPAOONU1XP8A18H/ABoAb/wyR4E/6CWq/wDf8/40ANb9kfwH/wBBTVef%2Bng/40AIf2RfAY/5ierZPpOf8aAEH7IngUn5tU1f/v8An/GgB4/ZC8AHrqWrf9/jQBZh/ZQ%2BHVoNputVfPrMTQBOv7K/wyIy41Fz6tcuM/gDQBNH%2BzH8LgPKbS5ZQe5lkH6g0ATwfsx/CqPgaKWHfM8v%2BNAFy3/Zw%2BFcSkHw7E6%2B8kmf50AXLL9nf4SQnd/wi0L/AO9LJ/jQBpW3wP8AhXbODD4Rsdw/vgt/OgC03wi%2BG4cFvB2lsen%2BpGP1oA84/aS8EeD9I%2BCWuXmj%2BG9LtbmCIOkkdmiMP%2BBYoA9F/Z92P8E/CB%2B8U0uD/wBFigDvVVmbeSRntQA/AJ69KAGTYxjdigBYkUL1zQAuxee1AEY%2BRvlfJ9DQBKBkZZQDQAuD2xQAhJI4FAEbqSDv6ZoAdIQq4A52nFAHzV8KT9l/bF8Z2QXHnWnmH8zQB9LR8A0ACvmgBD1oAloAKAEoAM0ALQAUAFADHODQAqnIoAdQBHKSOQKAGEl1x6HNAHg37dCIPglPJj5hdxdOp5oAzfA37PHwx1bwXpl7f6XJ9ouYFkMkUrB9xFAGsv7L3w4kyQ%2BrnPXbd7Sv6UAUrn9k/wACSE7PEXi6EZ4RL1Qv6pQAy6/ZU8LC2Edt4v8AFkWBhd16mB%2BSUAY8v7L2swtjT/ibq6J/CkhL4/LFACL%2Bzl47gOy0%2BLOoRgeiE/1oApar8EPi/p1q93a/Fe7k8vp%2B4O48e5oA6D9jTxJ4i1NPE1h4l1afUrnT702/mSFf4QOcAUAfRYkT5CD1BoAlBBFACjpQAHpQBGxoAUrlaAOC%2BOziL4V6znukf/o6OgDrvDwP9h2h/wCmCfyFAF6Ju1AD2PFACr0oAQrzQAhAxQB80ftWSiL4yfCdjjCawjH6B1oA%2BkbVR5MYP93%2BdADpGOelACqx9KAJBz1FADXXjigBmw%2B9AEqjgUABUZ6UAMeJWNAAIwOx/OgBfLT1NAB5ae9AB5aUAHlpQAeWnqaAE8tP7poAPLGeMigB2wetABsHrQAoAHWgAwp7CgBCgoAacr0FAAmc7sUASD6UAI2AKAGscxt9KAPM/wBpm3Fx8DvEaNgYs2OPxFACfsyTi5%2BBnheQn7thCn/fKgUAeoYyKAGhaAGmMZoAeoxQAvXigCN05yBQA9Pu0AIwoAQtigBsjb4iKAGy4QBm6KpNAHzL4Vcw/t06yqnCz6SzfX5hQB9P9qAEj6mgAYZNAElABQA1qAEoAXJoAWgBaAGOMmgBAMUAPU5oARueKAG7M98UAeDftyg/8KOnA/5%2B4cn2zQB6d8LVWf4ceHmlAbNlHn8qAOmaSGJBGcY6AUAPHlFd2BgUAC7G%2B4RmgB4QY56%2BtADShDDYABQBW1dV%2Bw3BPTyjnFAHzX%2BxwIz4l%2BIbKvI1WXnv2oA%2BkbYN5a7%2BuOMUAXYwAtADge1ACnpQBE2c4oAlHQUAedftD8fC3VgP7sX/AKOSgDtNAP8AxIbP/rgn/oIoAtRjHI9aAJGzkUAOU8UAOoAjlbbgnoTigD5f/ay3H4ufCxpuIzqiBiPeQf0oA%2Bm7Q7raNs/MVWgCcrnrQAACgB1ABQAmaAIyX3HHSgB3agCvI534BNAEqbtvU0ASA8UAJuOe1ADh0oAKACgBDn1oAOcGgCJi2aAEy1ACfMetACjeDx0oAkG8jmgB/agA5oADwKAGOcmgA%2BUIfpQB57%2B0ZC9x8GPEiJ977KwH0oAw/wBkqT7V8BfDxjP3Itp%2Bo60Aewr90UABOKAGkHqBQApYKMsQKAGqyt91xQAeYu7bnJoAdnb1oAQSBjgdaAGTD5eKAGW4yCDQAs43SLGeAwIoA%2BXY5DF%2B3ocEBW0koPfLUAfVHBHFAAqgUAL0oAWgAoAQjNACAHNADqACgAoAY3WgAAzQA4DFAC0ANkzt4ODQB4d%2B2xH5nwJ1JscrNGR9cmgD0H4Pzo/ww8OnBIFjF83bpQB1E5g5Lrkr1xzQAvmIEAVRtONw/un3oAarKjHbGcj6UAOaVwMshQDOSe1AC%2BfjbgHDdCOaAK%2Brsh024BPVD%2BNAHzd%2BxymPF3xDQcB9QdgD2yQKAPpqOM7QSRwuKAJQMLQBHkgk0AKGzQA8AGgBTQB5z%2B0U2PhZqzYOAIh/5GSgDtdAwdBs8HOIE/8AQRQBeiXA5oAc4yKAGqCKAE3nOMGgBJQGQZ45BoA%2BZP2w3RPGngKdzhotWUr9MoaAPpG0ZsQ4B2siY/Af/XoAuS7scUARxMxbBBoAn7UAIWGD2oAiZiOgyPUGgCK1nLs%2BAWwenpQBK08QfbvGT2z39KAD90XGRtb0PWgB7HjC9aAAMAKAAc80AOB7UAKaADIoAKAA0AJ8tABx6UABAoAZg7uKAH4OKAGkODnIwKADefQ0AHLUAGw4PIoAifcAeCeKAOO%2BO27/AIVJ4h2jJ%2ByNQBw/7Ek279n3RyeqzzKfwegD3DIAoAR5AuORk9BmgCm18FdjKRFGn3mZhigDgvF/xv8Ahn4auzY6r4ltBcj%2BCMNLz6ZUED8TQBi2f7Rnwokm8o655B6kvC%2BB%2BQoA7/w34y8L%2BIbcXWiarb3ykbgIm%2BYj/dPP6UAbzSh8gdgDnIoAdFtA3LyD3oAkbpg0ACLgcUAMuVyu8DlQcUAfJ2rsYP24NGkyQ0tqA3uC3SgD6wtiSGJoAmHQUAMkPI4oAkoAKAEoAWgAoAKACgBj9aAFSgB1ABQA18cZ9aAPEv21Vc/ArUnRiNs0bHHoCaADSNEvr74TaLfad4hn0eKHSwNocYc4zk%2BnT9aAMPwt4p8WeINS8HeFNRnvLCW8spLue4iChpRHtUE5HfdmgCOw%2BI/iC98VQ/D2BmN7/a8lrJdMAHMKKzhjjvtWgDR1T4lX%2Bh6rrfg2V3uNUgu4IIbhhyI5iqhsexJoA7Xwvq%2Bp2HjhvDOqzm9E9mLm2mY4JAzvGO/agDG%2BKvj3VvBPi3RLe00x7zT72OWS8K/dt4EKjf8AX5hQBfn8X3N/rWkWWlyWV5omqWkk0dzh9%2BxUJznOO1AHmX7GbRjxd8QkjfzFGoMdxI9Rx60AfTAYhQOaAJ15FADXWgCI8HigCSMnNAD6APPv2gQH%2BD%2BtnqfLjI/7%2BKaAOn8FsX8K6YzdWsoWP4oDQBtD%2BlABkdM0AHFABxQBHJtPUdKAPlv9ta3ceIvBF1u%2BQaoP5rQB9O6YRJYW7j%2B4v8hQBbJHegBodd%2B0EZoARyAcsdoFADJpD9xc89WHJFAHF/Ef4keF/ANoL3xFqcduj8JbIu%2BWQnp8oyaAPILr4vfFrxTcSQ%2BAfAaQ2rMfs93eAoHT%2BFuSAMjHBoArpqX7U9puuZ9A0W6ReXjF1bZ/DYc0AXdI/aE1Hw7cxWfxO8I3%2BiMflW7SItGT7tzQB7z4R8RaV4k0aPVdK1CG8tZBkPGwYD6kUAapQMwYMMdetAEq4K8EEe1AC8UAMmPy8UAMjDHrQBMOlACMuTQAx1IH3sUANxJ65oAcjE9aAHM4X0oARJAxNAD8j1FACFlHWgAyAM0AMeRMZLYxQBC1xCVYBu1AHM/FhY7v4a%2BII85H2Jz%2BlAHl/wCwvIZfgRaL/cu5%2BP8AgZoA92EhmjYIcHPX8aAMH4h%2BK9H8E%2BGp9d1q5SOCBep5JY9MCgD5rs7X4kfHbxC15DeXfhrwavy%2BdFL5b3PuB1xjuKAPXPC3wC%2BG/h9Y5G0OLUrjH7y5u2Ls59SpOz9KAOk1P4Z/D%2B7TyJ/C2kiNhtAW2RSx%2BqjcKAPLfHP7OttZo%2BrfDjV7/QtVg/epDDcP5Uh7LyelAD/gr8V9YXxR/wAIB8SYRpuvwDMUhT/Xj2YcHP50AfQiMCWOVIA4ANAEikOuehoAcoxxQAjnDj0NAHyf8TYvsX7aXgqdePtKojfmaAPq9QFGPzoAfxQAZH1oAWgAoAa3agB1ABQAUAFADG60AOHSgBaACgBkv3R9RQB4v%2B2TKB8CdVA5ZsAcfWgDM8IQeJZvhT4IGi28N5ZTacpnE0oTceMDntQBunw34jn8RaH41msILXVLJJbP7BA%2B6LyX%2BbOfqooAxrH4c6xY66PGsEbyawuqvcpbkcbHUxsAe4CsTQBW1vwDruq%2BIfEHjK5skhupJLb7PCTyyQEOCPfcSPwoA7LSNL13UPidb%2BJri1nhsraxMKJMm1gWxnC9T0FAFbxlDJq/xb0NJNFvLrTIrO5guZFt2aMszR4BI4wcGgDm/DfgbXfC/wAVXjtVe48LeRPcQE/8sHbP7lfYZx%2BFAHM/sdsB4/8AiVFhUf7azFB25FAH04xwgPsKAJlPyZoAjEm4kUAKU5BoAkXjigAoA4T457G%2BFuuq3CCBCP8Av4tAHQ%2BCireE9LKHK/Yof/QBQBruSCuKAHYyM96AEyucZ5oAay7uG7dMUAVppTE/7xVRdpO7d0A60AfKP7Z/izw/PceFreLVra4msNR864RZ1dlj%2BXnaB04NAHsGjfHn4VzWMEaeMNNjkVApjkuFTBAHrQBpf8Lx%2BFZUFfG2iMT63iigC1D8X/ho6hm8a6HGD3%2B2pQBIPit8N5nVIvHOiyZIyPtqUAY/xC%2BLfhnw/wCBNS17T9UttSnt4/ljhcPljnaOPpQB5b8HvhhceLdQHxO%2BJsbzXFyxltbGRj5aIfu8UAfSum2lnbWypZwRwwhRtEY7dqAHSht48h03t1Bx09aAMrxF4e0XxLZS6brNhFewSDY3moMjPoaAPmzxF4e8RfADxdB4h0N7i58G3Umy4t2JK2gJ6mgD6U0zxDpV7p1rfR3MXkTokkW087WXI4oAux6rpqnD30WevLAUASf2tpmeL635/wBoUANl1fTI%2BWvbfHf5v/r0AV5Nd0ZBubUIQPZqAGN4q8NRrltcsEx/emGaAK7eOfCCnD%2BJ9NU%2BhnUUANbxr4Qf5h4l04D1W5U0AV5/iJ4Dg4m8Y6Sh/wBu5UUAUJfiv8NIflm8eaOv%2B/eIKAK8nxh%2BFURy3jzQmX2vUxQBG3xx%2BE8Qz/wnOhAf9fqUAUpv2gfhIrYHjCwcdyjhh%2BeaAIJv2hfhMi5/4StCP%2BmYB/rQBAP2kvhFEOPEpfPX5M0ARzftMfCJF3Lrzye3l0AUT%2B0/8MHcCPUHK55Aj5IoA5nx1%2B0x8PtT8Lajptm94r3UDJETCcfjQBsfsI3UV18HXSIbfJvZQR/vMTQB79NGAu2PgNnJ9OP8aAPlj4yzXXxT%2BO%2Bn/DGKZl03S8XGokdHwA2D%2BFAH0joWnW%2Bh2UOmafaRRWMK7FCj7oAFAHNah4zmvNXuNG8JWA1G7twY5ZWJ%2Bz25HZj68etAFKXxD460plm1Dw3aXkICmUWDFpVTgFtuTwPXvQB1/hbXtP8AEenJqmmyia1ZypI4IZTtKkdsEUAeSftafD5te8Hr4n0j/Rtd0pjKJ4uGZeDyfbFAHbfAXxc3jX4d6Trs2I7uSERXCejoMN/MUAeiDH8NADh05oARgDgH1oA%2BT/j8Hg/az8B3CdQ0ePzNAH1VExe2VupIGaAJX7UAKnSgB1ADWJzQALz1oAdQAUAFAEbMR3oAVDuHNACjr1oAdQAUARXGfL49R/OgDw39sxH/AOFHamfTB/nQB23wCH/FlfCoPONOTHtQB3xCqD2zQA1VVVyo4HIoAiPlOwA4AzxQBNtGCQoOeDQA1oInYsVGT196AGXKqEdjzhTt9uKAPlz9j5v%2BLp/E7HG25fA/4HQB9RcmEN1yBxQBKqkx4zQA1INpzmgCUnHNABnPIoAbI%2B0dKAOF%2BOKLcfCbXlDFVEC7t3UfOtAGt8PN1r4A0RpCXY2EJ%2BuUHNAG6Z2EXmOqAdRlj/hQBieIPGegaBAZta1W0sowM7jKD%2BnWgDyvxP8AtKfDrSnkj0t9R1u%2B/gjtY9yt%2BOePyoA40/GP43%2BNZDB4J8BLp8DnHnXbFiB69BQBbi%2BCvxX8VAT%2BNPiPcWsEh/fWlqCVCkcjqPWgDxTT/hdNF408feFdO02XxBdadGsNksgGSSu4uck8jcKAOt/ZZ%2BF9hq15qNh4u8HrLaRt5lrey4XcTwV79MD86APoSX4AfCaZMv4at39M9v0oArS/s4/CWVf3vh1FUd1fH9KAKl1%2BzN8JTFsTSJ0DKSCJ%2BRx24oA8P8efDbw1pP7QfhjwF4UM0NnemC5voppCwZVdgO31oA%2BzrWCCKBLaCNVjj%2BVABwu3jigDgtYvNV8W%2BKdQ0DTdQl0/SLQCKe4hHzmbrtBz02hvxoAnHw60%2B2tsWOq6vbzqRtuBdZYt3JGOR7UAO8Da5q8Piu98I%2BIpPtFxComsrsJtW4gPAyOzBg2fbFAG9490Kz8TeEdS0W8jDxXcLRMSM7Tjg0AfJfwC%2BFPhj4gR6vpfii91NdS8PXK2oMNyU3RBWAOMdOBQB6iP2Vvh/IMx6prZQ8r/AKaen5UAQy/so%2BAg3Gra4D/1%2Bn/CgCWH9lT4fj/WalrT/W9P%2BFAFofsr/Djb895rRHp9sP8AhQA6P9lj4Vjn/ibMfe6P%2BFAEx/Zg%2BGoTZFDfEd91yf8ACgCOT9lz4akDba3Y9f8AST/hQA%2BL9l34YD/WWNy31n/%2BtQBZi/Zk%2BEy8ro8rH/am/wDrUAWYv2cvhcrYk8PxSp2Dvn%2BlAFqP9nf4Tp08MQKD1wf/AK1AE8HwF%2BFULAQeF7Mt6suf6UAXE%2BCvw4QYfwtp7L6GEUAXbH4S/DSA/wCj%2BD9LQ%2BvkCgC4Phl4CByfCmlk9v3AoAfH8OvBUUySR%2BE9KVkO5WEAyDQBW8ZeGPD0XhXVmXRbNQLdzgRD%2B6aAPIP2A5Fb4c6uiLsRNQxx/wACoA%2BjZ5Y1KoxO1mIP5ZoA%2Bbv2bLUal8b/AIia1fqDdi8EI3DnYFGP0oA948bXcmkeD9TvLcF5IoHk%2Bp6UAZfwo0SDRfBVlGhJuZ4xLcyjnfIRljnuPSgDq3ijMIXGEPzc9%2Bc4oA4PwbELD4j%2BItHtMxW/lx3ax/wozHBAHvjP40AdR4ssIrnwhqdjP9ya3dXPbkUAeDfsHXf/ABbnVLV5MvHetsRs9Dnv%2BFAH0bDKxhB3Jnv2oAf9phUkPKoP1FAENzew7MJdQK%2Bc5ZwBQB8uftITpD%2B0l8PbyORJImlAO1gxBBH6c0AfVNugjjCBy23HPrQBMp3DBFACqMA80AOoAa3WgBBkUALk%2BlADqAGk4oAiYFmwKAHKpXj9aAI1Mm/kcetAE2/14oAUOD0oAZNlgByBnORQB4p%2B2Ojv8CdXk3DagXP60Add8A2DfBXwn/t6dHQB3pG5RuHNAD1HHtQA3yoxk4oAdwBgHFAEM5YsApoAjuARaTKzcleKAPl39kDj4y/EuE4UtOQR/wADoA%2Bp4lByuRxxigB4yG4PFAC5OeoNAEUsnG3gH3/%2BtQAiu4424A/vHrQBFfajZWcfm3t3a20WPvyyBR%2BZ4oA8Y%2BO3xf8Ah7Z%2BEdS0aXX7S8u7mDAgtt0hY5B%2B8oK9vWgDhvCfx68VXfhHTtM8F%2BAtU1G9SFYfMuU2xAKMDBzjoO9AE8%2Bi/tHeOZlfUtfi8LWrfegtZNsij/fj/wAaANfRf2V9BuJxfeMfE2seIZ3OZBNMyk%2B2/O6gD1fwl8MPBvhSNYtD8M6VAF6S%2BSpl/F8ZNAHXfZbdVA2RoR3Uc0AFwnlWzmNmZsZG456UAfMPwYllk/aw%2BIiyKitIYjnHQ%2BWOlAHR2drrfg/WfAOk/aJyLvU7jdFHKdpj%2BTqOnegD27xLrcOhaJdapcRu0VupZlXliPagDg9N%2BKRu7230%2BXw/qcUl9Z/brXc0Z8yLGRjDdcetAHaeENfg8S%2BHbTWbKN4oZS6hZcFlKsUIOM91NAHzr8QlOm/to%2BGtTvWMUE2nxxxvuOGIkfI/UUAfT0IdYmZQo3Et%2BJ7UAcV8N2iEniG2hQ%2BdFqc3nYOCxaQkH0IxQB2bIhk2lY8KuR8uDu%2BtAHD%2BKmMnxP8ACcEDEzJ9peUBuUTYu3cR6kHFAHaOhjt3UMdojYksfvH1oA%2Bbv2YGa7%2BNXxE1KAv9ia5MK7icZLEjj6A0AfTVtGoQZwOOB047UANmtlZw24/TNAEi26YGc8UASIgXoTQAFjnpQA1nYHhc0AN3yf3aADfJ/doAejE9QKAFKgc8/nQAgAPcj8aAF2%2BhxQApUEYOaAAKB0oAMY5yaAELA4wc80AZmtWgvtM1C1zzLEyDJ4yQaAPkH4Oa/wCOfgw2uaE3gLV9ainvTJHJbx/u8c8gkj1oA7lPjd8Ur6XFp8Ir/bltokcLxgjJyaAON%2BCPibXtE/aFu5PGWnPoK%2BIE3Rxy8RiRRgDPfOBQB9dahFBf6XdWksfmRTIUI/vAigDznwp4mj8GwxeE/FE0kcsOY7a6kUiF40ICgv0Bx60AdHrXjvwtbKub%2BO9kxvjispBO5xychM4/lQBS8AadqF3qeo%2BJ9Qga3m1CRPKiJ%2BZYQBtz6Z9KAKX7SXiy38L/AAr1WaSVRNcwPDAmfnZyP4fzoA8C%2BD3wf%2BLT%2BALc6N43Ph%2B2vHFw1sJHRwhBxyozQB1g%2BAfxdk4m%2BL16F/2bmb/CgAX9nfx%2B52zfGLWi47CeXH5mgCZf2aNcuoTHqnxQ8STMSCV84lePQk0AbPgr9mrSdB8Qwa/qXiTVNYu7Zt0H2ptwT6c0Ae8QKQqAnG39aALAwc0AKBjvQAA5oAKACgAoAWgCJsliBQAi5U80ANubmCFCZZUQAZO5sUAUY9f0V%2BP7Usx9Zl/xoAkXU9Mfj7fbD/tqKAJ4Lm1kbbDOjn2ORQBLM7KDyQAMnjOaAPHP2vXjHwB1tJHUFwoG4YPegDX/AGfNa0Zfg54Ut31K0EyacnyeauRjr396AO/t9a0yc4S8hJ/3hQBdiuIH%2B5NG30YGgCTKkdRQBFMQoznFACrtA3E/nQA25WJkLSdh%2BdAHy5%2BylGU%2BPnxIzDIoMuVO04%2B/QB9RkpGzMqsW74GaAEluoIk3Sts43ZYYwKAOS8VfEnwV4eVv7U8Q2CYGSqTqzfkDmgDynWv2nvDTztZeDtE1LxBe9EEMTYP14z%2BVAHOXGv8A7SHjl/8AiSaKvhqzkPIkQKwHv5uSfwoAv2H7O/ijxAol8eePtSvg/L21u7JEPwP9KAPQPCP7PXw38OSRSw6Mt5NH0kuWMmR9Dx%2BlAHplppNpY2/2ezsra3hX7iQJsH6UAWkj8sjaxQHsFAAoAlyuQC6t9TQA4glSOB6UAQ%2BQCQWYk0ALLtAAAPTp7UAfK/w1nt4P2tviI1xeQ2kKiN/MeQKoHljv2oA67wZpU/ia48P6mmvWjHQNVneRGlMjyqdmACD04oA9e8ZaZeaz4XvtJh2xTXduYxIwyqn6UAcTpPgTWLTxH4enSSH7JpGiDT35%2BZ5AAA3zc4oA6X4X6Jf%2BHfCkej6i6GWCSdi0YG0h5XcH6/NQB5t%2B154auZ/C2meMtLgMt/oF59ozGPmaM4yP/Hf1oA9C%2BD3j3TfHvgu01m1mja4MY8%2BEH5kbHcdaAIdY8L6vY%2BLD4l8N3BeScbbmzkIEDr13Dvv49e5oAq3vi3xXds2nW3gS/F0SfmluUWJTnht2cEd8ZoAt%2BAvDt9aajda74gmW41qZFV3QEIqqSQqj8eooAj%2BOfjiz8C%2BA77VbiWPzzCUto2OGdz2A70Acn%2ByP4TuNE%2BH41nUVJv8AWZWu5s9Rk5X9CaAPZdxE2CM0AWVx6UAOzxmgAyMZ6UAJleuaAEyp6EGgBRg9MUAH4UAAxjIB/KgBCwI64%2BtAETlSQBIo/GgCRRjnJNADiyjqQPrQABgemaAEY5GOn1oAZtCfMXC/U0AJPHHIvLAZ6kGgBqgNHtTGwDAHNAFeaZ4lKtGmR8pbBxigDyX9pb4Y3Pj3wrBqGkyyRa5pn72yZSB8wOaAMT4I/Ga2nK%2BFfiDcf2V4nsyYyLhfKV1OAOvHbrQB7Zc2umavaiK/trW6gkJIWWIMrA9xuH8qAKOkeEfDegybtK0fT7R3JJZYgGwTk4br%2BGcUAUvH/jnw34D0KXUNb1S2tyiM0cbOA8p52qAOfQUAfPnh6w8TfHjx1a69rEL2vg6ymWWCKUbQ7Z569eAKAPqaKOG0CRJEURE2ptUbQOwoAmhkDfMyyJ/vA0APaSJmKtKhP90NyKABMKDhlHp1/rQAkczEkEE47lSKACW4SJd0jBB7rQBANX01CwkvIYyBk72Cj9aALkU8U6eZDIkif3lORQA9aAHUAFABQAUANAwSaAIpGbBK9fWgDK8Q6Lba1pk9rclwZoynmK2MZFAHgFz%2ByjotxcNdr4t12KQuWZftHyj6cUAMuP2VLRiNnjLW8/3vNNAD7b9lq4t%2BYviRrkY7Def8aAKGp/s0eMC4Fl8S9UK56ybjge2GFAGdrf7OPxB1HTX0yX4iXd3aSgApcR5Xj2zQBjw/sm%2BOY4QsPjhYxGmyIKrKAP8AvqgCs/7KvxRDloPG69fvGVuf/HqAHj9mj4z2q5g8dqT6ea3/AMVQA1vgV%2B0DCMQeLNxHQiYj%2BtADovhN%2B1JCf9G8VICOga9UfzU0AJL4B/azt3%2BXxKWYdo7pW/8AZaAJLfSP2ubRgZtQnnVT0dlYH8lFAEHw40/49%2BDPE%2Br61P4Fm1G61HHmsUYKQDnIxQB6Hc/Fb44paeVD8Jb2N%2BhZbd3H5cZ/OgD5/wDFGq/HHxjqM91cw%2BIrmyjmxNbwxFRG46oAOR17k0Abfh638M6HCkviX4UeJtYm4z9tkbap74AUE/nQB6Jo/wC0B4e8OQra6Z8Jb2wjjHGMAfkUz%2BtAG1aftZ6KEKz%2BCtV99jH/AOJoAWP9rrwv5vlnwpq0f%2B8T/wDE0AaFt%2B1x4DlXNzp%2Bp2h/u%2BUZP5YoAtRftX/DRgN76oh9DYsP60ATf8NSfC1iPMudQUds2Z/%2BKoAtxftL/CaQrnWJowe72hGP/HqALsX7SnwlY7E8RDP/AFy/%2BvQBo237QPwolXLeK7ZMjneQuP1oAfF8dPhNNOixeM9IBJwWNyAV%2Bo9KAPm%2B31HwX4g%2BP3juz1DxDYwadrdr5UF2LkKsj%2BXhdp%2BpoA0v2OW8J%2BHNR1vV/EXi6yS98/yrZJbwbSoJ3Nt9/l/KgD6ak%2BKXw63Ip8YaOz%2BguloAfF8Q/A0pYjxVpa57/aVoAmg8aeFp2EVv4q0qTPUecDn9aALE%2BveFr61Nu2qafNDMrB1MgIOP/wBdAHzZ4r8P%2BIPhD4guPGPw21G0vNClOb2wM4LNk5%2BXHSgD0TwD%2B0f4G8RulnqF8mh32NslrcuOH7jfxjn2oA9ObxZ4aitDfS6xYLbAZEpmG0cf3qAPMviD%2B0j8PvDu6107URrGoHiFLRfNUv2UkGgDznwX4S134seKI/GnxGlGm6NG%2B6xsmnC85zyp/CgD6gsb3QbK0jtba8s44Y12RqJBgCgCQ63pfT%2B0rQY4%2B%2BD/AFoABrel99TtD9XAoAX%2B29G76jaE%2BglFADJ9e0WJNzarZIP9qQf40AUpPFXhrBJ8QacmOuZBj%2BdAFX/hPPBkJPm%2BKtLLD%2BETgCgCGX4pfD1W2yeMNHRv7hulFAA3xT%2BHKLk%2BMdF/8CloApy/GX4YIdsvjXRkb/r6WgCtP8afhVDlpPHGisfa6UmgDNu/2g/hLFjHi2zkx/dIf%2BRoArf8NI/CPBU%2BJEb6R8fzoAgm/ad%2BEMAw2tzv/wBc4N39aAKkn7U/wiX/AJftSJPTFmf8aAI2/al%2BGoXfHPqLL2H2Qgn9aAM64/a3%2BHaSbVstZlPb/RiBQBRuv2svCT8r4Y1WZOxIK/0oArp%2B1v4dU%2BXb%2BDtXV/7pz/8AE0AXLL9p2e%2BmCWPw51u5z1VT0/8AHaAH3Hx78ayOZbL4S%2BIZ4x/yzYnB/HZxQB5v8WtW8VfEi1UXnwT1a2ux9y5jBScfRtvP5UAc34M0H9pXRkB0Cx1y2tAQEglQlR9Q2T%2BtAHXXll%2B1pq8TQvLPaKRgiNgm4fUqaAOb0b4KfGUeIBqWuaVZ6vIp3%2BTqGo5Qn6YoA9ctj%2B0w9oLHRNG8F6RaxDakau2fzzQAy00b9qq5kKXet6Na57qNy/zoAmuvB/7TDDyY/G%2BnQqf%2BWkMeMfmTQBmzfCz9pKc5k%2BLbbT1AhQ0AMT4FfGu4Ob34tzqT1K2%2Bf/ZqAJf%2BGdviJNhdR%2BK2oTL/ALClT/OgCxF%2BzLrUo/074la3IP7oY/40ASx/su6fDdwXFz4p1y4aORWOyRhnnvkmgD6I0PTodI0uHTrZpHiiQKC5yx470AaC0AOoAKACgAoAQjNADCtABtHcZFABsQHOygBWVGHIoAie1iPO3JoAljVUXAGKAGsoY89KADyxtwvFACLCoOT1oAlUADigAOccUAMkDY4NADU8xRyc0AKrFhyKAB492MHpQA25WEQP5q5XHNAHjfg/xT4f8JWfiy/8QXttZo3iC7YBxy33cAflQBb%2BG/xq8FePdW1CzsZFiNoqkPOETzN3ZeecUAd9DqHhp03LeaWyZxuMifkeetAEzXOgy7Y4rixlD/LtjkTnPbrQByfizVdEg1nSdKj0uC8e%2BvFt5T5KlYAf7woAk8fWvhXw74Zu9Vm8PaZMbcBvLeMANlgBzj1I7UAc34ZbR77xN/YWv%2BCtDtZprRby0NtIZ/NBwDwyLjqfWgDo9R8EfDNphBd%2BHdGV8bjvjVdo75z75oAqt8MPhdcusQ8OaPvbiPCJ8w9h/WgCVvgp8NXXb/wimngd2WMf4UAU5fgN8MCf%2BRbs0HUFYwMmgDAvPg78E7PVIrDU9B0%2B1u5SHjWZgDIM9RxQBiaV8C/hve/EfWNPn0bMEVnFNEVwoG5mBA9eFFAHTt%2Bzj8KmEccfh5o0Xq24c0ARXH7M/wAJpH3HSZB/21/%2BtQBDcfsvfCedcR6feRt6rcYH8qAK8X7KfwrU5NvqJP8As3R/woAJv2VPhi4/cjVoiPS6NADT%2Byp8M/JZS2qu3%2B3dGgCq/wCyV8MJYsP/AGsrD%2B7dUATr%2Byr8NhAIPO1ny%2B4%2B2GgCJP2SvhYrg41Yj3uqALB/ZU%2BG3mBkuNYQDsLo0AJN%2By18PC4CXOtBP%2Bv00AL/AMMr/DUD/W63n1%2B2mgBp/ZY%2BHJ487Wv/AANNACj9lf4cY/12tf8AgaaACP8AZX%2BGwfLy60f%2B300APP7LXwvfObbUSfU3Zyf0oAfa/st/DCNv3tjdOn%2B1Pn%2BlAFw/sy/CYD5dGkx6mX/61ABD%2BzV8Ko2z/Y7H/tp/9agC6v7O/wAJY1xN4Xt5D9BQA6P9n/4Rx8Dwlbg%2BmB/hQBKfgb8KogCPCVsw9NgNAFm3%2BDXw0GBB4QtF9zAuKAL0Pwk%2BH8fTwtpv/gMtAGhafDfwJaphPCelgk8EWy5oAvR%2BDPCqYx4fsFx0H2dRQBOnhfw7Gcx6NZofVYQDQBct9G0yD/V2UC/8AFAEps7NefskH/fAoAUW0LDCxRqB6KKAJkjVFChFI%2BlADJIYB8zRAn6UAOVEK/KiCgAbKrwFoASNyWwwH4UAPZO4ODQAMrY%2B/QARIUXGaAGtGM9W/CgBPJU8EnHfNACLbxIfkjHPWgB/lp/zzWgCQDAAoAWgBAMUAFABQAHpQA3JoAVTmgB1ACMMigCNy3SgBEZj96gCQYoARiKAHDFABigBaAGg%2BtAAxyOKAInLGgB0Ix60ASEUAIF5zQAkyq0TKwyCOlAHkZ%2BF%2BieJtK8QaV4p09Z7S81ea7hcuA6hsbcMDn1oA5z4e/s5%2BDfDWo6hPe2iapBcGMWyug3QkDnDdaAOxuPgb8NbpjK2gCPk/KkrKvXrgHFACW/wP%2BH1ncQ31rpl1FNbyLKnlXUi8g56ZoA5bxb4X8Z6TfafPY3VpdCbVIZHcRN5ioM9WVc8ZoA7rxVcaXr8N54a1W3u4kEQMl19nYhTkEBTj5sEUAcz4A0K%2BvviJHrlzeXV1p%2BlWP2GxmmgCNLlgSfXpkUAM%2BIukafrXxr8PRapB51m9hcJPEWIRtiu43djQByPhOxSC38Ba1BbSG%2Bm1tre4kZyfLiDjCgHgDBoA9W1fwb4gv72W5t/GmrWCOciJY4yg/HOaAKR8F%2BL44CkPxAvmCHcu%2B3jbcfTJoA8Y/aJ%2BF/xF8X%2BJfDTWuqte3EakG4eJIfswVi24lOv40AehfBPwv4g8L%2BLdVtPEniJtfv5dPt5EdyT5Y3uNoz24oA9shZWXDcH0oAlManrn86AG%2BUmfu0AOCL6AfSgB2B6UARTKD2H5UAChAoGwcCgBrLFnPligBvB6IF9wKAJImjPyjr7igB2yMdUX8qAEPlDjav5UANCxA5CCgB4WMjGwflQAvlx/wBxfyoACkY/hX8qAEBHQcfSgBdqnufzoAXaKADavoPyoAQxoeqigBvkxg5280AIVkH3cAfSgA/e%2Bv6UAKpbPOPyoAdtGCSMn3oAhkDA5UAfhQA9Gc/ex%2BVAEhAYYwKAGGM54bFACqrd2zQArqWXFACKrAdvyoAcQMdBn6UAMUHdyBQBJQAGgBjA9cmgBo3lupxQBIAKAFIzzQAnPoKAAH1oAXIoAWgBrdaAEzQAZoASgBy0AOoAKAEIzQBGVxQAmTnFACkE96AANj3oAeGyM0AL2oAjY80AKvvQApXNACkYoATcRQABvWgBxGQRQBCtuik9CDjgqMUAPEfqFGOBigBoBj%2BUBdvUUAMmlIHpg54oApNc/NtCAKOAQTnFAFiGETJ5khDbhwp6DPWgCRYRHGiRBVKjC8cAf44oAheytppTNLDE0q5CyFAWAPUZoAiOk2MaxlbaBUibfGixKAr/AN4cdelAEiXqO5HlkdutAE5WNo13LyvPFAEMhTzvNwSDwynoaAIrLSLWPVpNYCgXUsYjYgcbQSQB%2BdAGkIwpyoGfegB9ABQAUAFACYoAQqPSgBuBu4oAfjjoKAGhAOQADQA2RvSgBmB35oAeiA0ASAAUALQA1gT3oAjwQetAEi0AOoAKACgBDQAc%2BtACYNACgUAGKADA9KADAoAQnAyKAGbx6GgBVbPSgB/NAAc9jQAUAFAB3oAWgBCM0AAAoABQAtABQBG5oAapOOtAAP/Z'/%3E%0A%3C/svg%3E)
SECTION B (60 Marks)
Answer all questions in this section.
3. (a) In a light experiment, a narrow beam of light directed onto a glass prism leaves the prism and
falls on a white screen. Draw a labelled diagram to show the experimental set-up and
observation seen on a screen. (5 marks)
(b) Explain two ways in which lens cameras differ from the human eye. (5 marks)
4. (a) Why a bubble of air increases in volume as it rises from the bottom of a pond of water to the
surface? Briefly explain. (5 marks)
(b) A half meter rule AB is freely pivoted at 18 cm from end A and balances horizontally when a
body of mass 35 g is hung 48 cm from end B. Calculate the mass of the rule. (5 marks)
5. (a) Figure 1 shows a simple machine B which has to be used to pull the packing case of 2000 N
into the car by an effort of 500 N. Calculate the efficiency of machine B. (5 marks)
Figure 1
(b) With the aid of a clearly labelled diagram, describe an experiment to investigate the
relationship between the force acting on a body and the acceleration produced. (5 marks)
6. (a) A beaker containing ice is heated from -5°C to 0°C and then from 0°C to 15°C. With the aid
of a diagram, explain the variation of density with temperature. (5 marks)
(b) A brick at 20°C has a dimension of 30 cm, 18 cm and 10 cm for length, width and height
respectively. If a brick is heated to a new temperature of 150°C, calculate the new
dimensions.
(5 marks)