' preserveAspectRatio='none' x='368' y='316' width='316' height='131' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAIMBPAMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APsqgAoAKACgAoAKACgAoAKACgAoAKACgAoAyfF2lT634eutIgvXsxd7IppUJDiEuPNVSCCrNHvUMPukg84xQB5P4a%2BG2ieBvjxoq/DaIaRpj6TdSeJ7CK6keJwCi2bMrFtrl3mKkkZWKTHRgQD0P4q%2BBtG%2BIPgrUfD2rWVnM89vIlpPcQCQ2kzKQsqdCCpweCMgY6GgDg/hr4itr39m7SLP%2BwbNdWuIT4fm0U26Kn9oFmhmWaFFARch5pVC5SMSNg45APSvAPhXR/BXhHT/AAzodtHBZ2UQQbVAMjfxO3qzHJJ9TQBu0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGZ4pu9WsfD17d6FpP8Aa%2BpxxE2tmZ1hEsh4ALsQFXnJPXAOATgEA8y%2BG83xWXxFCmsfDnStBS%2Bn8/XNak1iO%2BludsZCoscYjKc7VUksEXI2nOaAPYKAPNvDngvVLD4xa3q8wY%2BHJGXUtPj8xNqahJEYZ2CDkfuxwT1MsnJzwAek0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGd4m1iz8PeG9T1/UfM%2BxaZZy3lx5a7m8uNC7YHc4U8UAcX8Bfi1o3xd8NXms6Rp95p/2O6%2BzTQ3JUkHaGBBXggg0Aei0AFAHif7Nfx5T4x6r4hs18PNpK6YUkgY3HmGWJ2YLuGBhvl5AyPegD2ygAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA4z46/8AJEfHf/Yt6j/6TSUAeD/8E2/%2BSceJ/wDsLr/6JWgDvf2qPjfe/BuPw19h0K31R9XmnMhmlKCOOHy9wGP4j5owTwNp4OeAD2ewnF1YwXQXYJolk25zjIzigD4q/wCCan/IyeNP%2BvO1/wDQ5KAPqL49eO5vhr8K9X8Y21hHfz2XlLHBI5VWaSRYwSRzgFs4HXFAC/AjxzN8SfhVo3jK4sI7Ce/WUSQRuWVWjleMkE84JTOO2e9AHc0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH5pfBXwl8VPjVq%2BtnR/Hs9rc2Wy4uXv9SuFEhlZuV2Bucqc9OtAHqP8Awyx8df8Aop2nf%2BDa9/8AjdAB/wAMsfHX/op2nf8Ag2vf/jdAB/wyx8df%2Binad/4Nr3/43QAf8MsfHX/op2nf%2BDa9/wDjdAB/wyx8df8Aop2nf%2BDa9/8AjdAB/wAMsfHX/op2nf8Ag2vf/jdAB/wyx8df%2Binad/4Nr3/43QAf8MsfHX/op2nf%2BDa9/wDjdAB/wyx8df8Aop2nf%2BDa9/8AjdAB/wAMsfHX/op2nf8Ag2vf/jdAB/wyx8df%2Binad/4Nr3/43QAf8MsfHX/op2nf%2BDa9/wDjdAGP42/Zs%2BM2heDNb1vVPiJYXdhp%2BnXF1dQLqd2xlijjZ3QBkAJIBGDxzzQB6T/wTb/5Jx4n/wCwuv8A6JWgDnv%2BCmf/ADT7/uJf%2B2tAH19oH/IC0/8A69Y//QRQB8Y/8E1P%2BRk8af8AXna/%2BhyUAe3/ALcX/JtPiX/rrZ/%2BlUVAHy/8GfgH8V/G/wAOdM8TeGfHVnpelXZmEFrJqF1EybJXRvlRCoyyk8HvQB2P/DLHx1/6Kdp3/g2vf/jdAB/wyx8df%2Binad/4Nr3/AON0AH/DLHx1/wCinad/4Nr3/wCN0AH/AAyx8df%2Binad/wCDa9/%2BN0AH/DLHx1/6Kdp3/g2vf/jdAB/wyx8df%2Binad/4Nr3/AON0AH/DLHx1/wCinad/4Nr3/wCN0AH/AAyx8df%2Binad/wCDa9/%2BN0AH/DLHx1/6Kdp3/g2vf/jdAB/wyx8df%2Binad/4Nr3/AON0AH/DLHx1/wCinad/4Nr3/wCN0AH/AAyx8df%2Binad/wCDa9/%2BN0AcF8b/AIU/Fn4S%2BFrXxFr3j/7bbXN8tkiWWp3TOHZHcE71UYxGe/cUAfc/wOvrzU/g14N1HULmS5u7nRLSWaaRstI5iUlie5JoA7KgAoAKACgAoAKAPiX/AIJp/wDIe8bf9etp/wChy0AfbVABQAUAFABQAUAFABQAUAFABQAUAcl8Z7S6v/g940sbG2muru48P38UEEKF5JXa3cKqqOWYkgADkk0AeDf8E4La5i%2BGPiG4lt5Uhn1cGGRkIWTESg7T0ODwcUAeoftCfBLR/jHHoI1TWL3TH0eaVlNuiuJY5dm9SD0P7tMN254OeAD1G0gS2tYbaMkpEioueuAMCgD5M/YF8BeM/B3iHxm/inw1qWjo0cNtG13CUWV0d92wnh15HzLlTngmgD6V%2BJHg3RfiB4Mv/CfiFJ206%2BVRIYJNkisrB1ZT6hlB5BHHIIoAd8OfB2i%2BAfBmn%2BEvD6Trp1grCPzpN8jFmLszH1LMx4AHPAA4oA6GgAoAKACgAoAKACgAoAKACgAoA4/423l3p3wc8Z3%2Bn3U9pd22hXssE8MhSSJ1gcqysOQQQCCOlAHwX4F8AfG748eEZr6Lxdd6zpVlfmIwazrUzhZ1jB3KjbhnbJjPXkigCH4p6f8AHb4LW2iaVrXj/W7O2uoXSwg07XrgxxRxbBtCggKBuUACgD9KV%2B6PpQAtABQAUAFABQB8S/8ABNP/AJD3jb/r1tP/AEOWgD7aoAKACgAoAKACgAoAKACgAoAKACgAoAhvLmCztJru6lWKCFGkkduiqBkn8qAOY8Ma74h8UR2Ws2Om2%2Bk6DPiSMagjNeXMR6P5akLACBldxckMMqhBBANbxl4h03wl4U1PxLrEhjsdNtnuJtpUMwUcKu4gFmOFAJGSQKAOV03U/irqWgQa8mj%2BGdPa4WG4TRbt7nz0iYIzxyThRsmALjAiYBgBzyaAN/4c%2BK7Pxr4PsvEVnby2vnhlntZiDJbTISskT46MrAgjr7DpQB0VABQAUAFABQAUAFABQAUAFABQAUAcR8ff%2BSG%2BO/8AsXb7/wBJ3oA8X/4Jw/8AJHdd/wCxgk/9J4KAOK/4KX/8hPwL/wBcb7/0KCgD7E12K8m0S4j0%2B/awufLzHcLEshTHJ%2BVuDkAj8aAPNPhp48v7b9l2w%2BIfiOefU7y30WW%2Bun2rvmZN56DaOw9KAKUmr%2BLPB/hrwr428QeJbjUTqd3b2%2BrackSPbj7Y6hPI4Rk8ssoBJOVzkE4oA9V8V61a%2BG/C2reIr6OaS00uymvZ0hAMjJEhdgoJALYU4yQM9xQBwPgPSfFvi/wLYeJ9b8a6lp%2Bo6zZJeQwaX5a21msi741VXQlyFZc7jyQe1AGf4Y1v4keL9LvbHTNa0vT9X8O6xd6Tq0z2waK6ZPLeJ4wQcfI43cL8xOBgA0AeDf8ABNP/AJD3jb/r1tP/AEOWgD7aoAKACgAoAKACgAoAKACgAoAKACgAoA86/aTs9W1D4I%2BJbXRTKLloYmkETYZrdZo2uFGOTmESDA5Ocd6AOW17QLHSfG/w58S/DW8uwmpXotL6G0ujLbXWmmNpHmdGyMqwjHmDGN4ByduADr/2hNJsPEPwk1vw3fa9Y6F/a0a20F5etthWXcHVWORgHZjPbOcHoQCGz%2BLGkt8LL3xxfWMkB0%2BcWd3Zw3Ec4F0XSNY45gQjozyIBJkDDZO3BAAI/wBneztdO8D3NlFrOm6ldtqdzeXq2E4mitZbhzP5HmDhyokA3DGfQUAek0AFABQAUAFABQAUAFABQAUAFABQBxHx9/5Ib47/AOxdvv8A0negDxf/AIJw/wDJHdd/7GCT/wBJ4KAOK/4KX/8AIT8C/wDXG%2B/9CgoA%2BxNev7XTNDub28dkgjjwxWNnPPyjhQSeSOgoA8Z%2BEmgz%2BKf2QYvBAM9hqMuiTafMtxbOjQyuGwCr7c/eHfHPWgCPV7rUfH3hLwT4Gh0S/wBP1W31C0n1oTQvs01bJ1ZyXZVWTc6Kq7SMhtwyBigD1T4pXWlWnw%2B1k67p1/qOk3Fv9kvbaxiaSZ4ZiIn2qnzHCuSdvOAcc0AeefCjxjqVj8IfEJs9N1DVLfwnbvDozXenzWdxfQRw7oo3jKA71AEZZAQ2MgAnFAHmlp8QdW8P2TReD7zWLfVNSupdU8Q3%2BoeDL2WG7u5Qq7YI1AMaosYGCOQynJO6gDmf%2BCaf/Ie8bf8AXraf%2Bhy0AfbVABQAUAFABQAUAFABQAUAFABQAUAZ3ifWLPw74a1TxBqHmfY9Ms5ry48tdz%2BXEhdsDucKcCgDwg/tifCAjBXxFj/rwX/4ugDK0P8Aag/Z/wBCmuJtE8P3uly3RBuHs9EhhaUgk5Yqw3cknn1NAEviD9qj4DeIdPOna/oupatZFg5t77R4p4yw6Ha7EZHrQBSi/aR/Zwh8OTeGovCUsehzv5kumr4fgFrI2Q25os7ScqpyR1APagCz4b/ah%2BAHhq0ks/Dnh%2B%2B0a2lk8ySGw0SG3R3wBuKowBOABn2FAHtPwg%2BJXhz4peGrjxB4YF6LO3vGs3%2B1QiN/MVEc4AJ4xIvP1oA7OgAoAKACgAoAKACgAoAKACgAoA4j4%2B/8kN8d/wDYu33/AKTvQB8I/s%2BftEal8IPCV74fs/DFrqqXd%2B14ZZbpoypMaJtwFP8Aczn3oAx/2ivjXffGS50Wa80C30g6UkyqIbhpfM8woTnIGMbP1oA/Txfuj6UALQAUAFABQAUAfmV%2BzH8aofg1qGuXU3h2TWv7UihjCrdiDy/LLHP3Gznd7dKAPcf%2BG47L/om1x/4OB/8AGaAD/huOy/6Jtcf%2BDgf/ABmgA/4bjsv%2BibXH/g4H/wAZoAP%2BG47L/om1x/4OB/8AGaAD/huOy/6Jtcf%2BDgf/ABmgA/4bjsv%2BibXH/g4H/wAZoAP%2BG47L/om1x/4OB/8AGaAD/huOy/6Jtcf%2BDgf/ABmgA/4bjsv%2BibXH/g4H/wAZoAP%2BG47L/om1x/4OB/8AGaAD/huOy/6Jtcf%2BDgf/ABmgA/4bjsv%2BibXH/g4H/wAZoAxfHv7Y9p4n8Da/4aX4fz2ratplzYic6qHERliZN23yhnG7OMjOKAHfsL/DDwF478D6/feLfDVrq1zbaksUMkruCieUpwNrDuTQB9Ef8M7fBb/oQNN/7%2BS//F0AH/DO3wW/6EDTf%2B/kv/xdAB/wzt8Fv%2BhA03/v5L/8XQBxfx0%2BBnwn0H4O%2BLNZ0jwVYWl/Z6XNNbzpJITG6qSCMtigD50/Zs/aOt/hB4GvfDUvhGXWGudTkvvPW/EIUNFEm3b5bZ/1ec57%2B1AHp/8Aw3HZf9E2uP8AwcD/AOM0AH/Dcdl/0Ta4/wDBwP8A4zQAf8Nx2X/RNrj/AMHA/wDjNAB/w3HZf9E2uP8AwcD/AOM0AH/Dcdl/0Ta4/wDBwP8A4zQAf8Nx2X/RNrj/AMHA/wDjNAB/w3HZf9E2uP8AwcD/AOM0AH/Dcdl/0Ta4/wDBwP8A4zQAf8Nx2X/RNrj/AMHA/wDjNAB/w3HZf9E2uP8AwcD/AOM0AH/Dcdl/0Ta4/wDBwP8A4zQAf8Nx2X/RNrj/AMHA/wDjNAHl/wC0p%2B0bb/GDwRY%2BG4vCUujNa6kl957X4mDBYpE27fLXH%2BsznPagD7Z/Z7/5IV4F/wCwBZ/%2BiVoA7ugAoAKACgAoAKAPhr/gnLpemanrvjJdS060vRHbWpQXEKyBctLnG4HFAH2Z/wAIp4X/AOhb0b/wBj/%2BJoAP%2BEU8L/8AQt6N/wCAMf8A8TQAf8Ip4X/6FvRv/AGP/wCJoAP%2BEU8L/wDQt6N/4Ax//E0AH/CKeF/%2Bhb0b/wAAY/8A4mgA/wCEU8L/APQt6N/4Ax//ABNAB/winhf/AKFvRv8AwBj/APiaAD/hFPC//Qt6N/4Ax/8AxNAB/wAIp4X/AOhb0b/wBj/%2BJoAP%2BEU8L/8AQt6N/wCAMf8A8TQAf8Ip4X/6FvRv/AGP/wCJoAP%2BEU8L/wDQt6N/4Ax//E0Acp8ZPCWhv8IfGaad4Z05r1tAvhbiCwQyGT7O%2B0Jhc7s4xjnNAHxR8EvH3xq%2BEei3%2Bk%2BG/hzNdwX1yLiVtQ0S8dgwULgFGQYwO4NAHoH/AA0x%2B0Z/0SzT/wDwn9Q/%2BO0AH/DTH7Rn/RLNP/8ACf1D/wCO0AH/AA0x%2B0Z/0SzT/wDwn9Q/%2BO0AY3jf46/H/wAXeEdV8Mal8MYIrPU7V7aZ7fQb5ZFVhglS0hAP1BoA9Z/YN8Gx2/wh1VPFPhVYr06/MUGpaftk8v7Pb4I8xc7c7vbOaAPoL/hFPC//AELejf8AgDH/APE0AH/CKeF/%2Bhb0b/wBj/8AiaAD/hFPC/8A0Lejf%2BAMf/xNAB/winhf/oW9G/8AAGP/AOJoAP8AhFPC/wD0Lejf%2BAMf/wATQAf8Ip4X/wChb0b/AMAY/wD4mgA/4RTwv/0Lejf%2BAMf/AMTQAf8ACKeF/wDoW9G/8AY//iaAD/hFPC//AELejf8AgDH/APE0AH/CKeF/%2Bhb0b/wBj/8AiaAD/hFPC/8A0Lejf%2BAMf/xNAB/winhf/oW9G/8AAGP/AOJoA%2Bbv%2BChei6Npvwc0afTtJsLOVvEMSM8FskbFfs9wcZAHHA/KgD2/9nv/AJIV4F/7AFn/AOiVoA7ugAoAKACgAoAKAPiX/gmn/wAh7xt/162n/octAH21QAUAFABQAUAFABQAUAFABQAUAFABQBwPiD4yfDHQPF48Jax4vsrTWfMSJoGSQrG742h5ApROozuYYzzigDpvFPiXRfDNnb3Ws3jQLczrbW0ccLzSzytnCRxxqzu2AThQeAT0BoAm8Na5pPiTQ7XW9Dvor7T7pS0U0ecHBIIIPKsCCCpAIIIIBBFAEXizxLoHhTSH1fxHq9ppdkmR5lxIF3ttLbEHV3IU4RQWOOAaAM/RvH3hXVddXQYtRmtNXeMSxWOpWU9jcTp83zRR3CI0gGxslAcY5xQB09ABQAUAFABQAUAFABQAUAFABQAUAFAHzJ/wUd/5Irov/Yxw/wDpNc0Aewfs9/8AJCvAv/YAs/8A0StAHd0AFABQAUAFABQB8S/8E0/%2BQ942/wCvW0/9DloA%2B2qACgAoAKACgAoAKACgAoAKACgAoAKAPNvi5oujn4a6j4IS2luLrxVNLZWqGIzsbmcs/nucHakX3y5%2B4sYAyQqkAwLOySH9qbQNAmke5tPD/gBptPEnWKZ7pYJJOP4mjRVPbigDS%2BE00kXxu%2BL%2BkxbIrGHUdMuo4EQKqzTWKGV%2BB95yiknuRnqTQAeLyB%2B0r4Kk1U7NOi0a%2B/s55flj/tB2RSqt3kMJk%2BX0zxQAn7TpB8E6QLIhtfTxDp82ixpzMZ1nUOY1/iIhaXPBwuTQB6vQAUAFABQAUAFABQAUAFABQAUAFABQB8yf8FHf%2BSK6L/2McP8A6TXNAHsH7Pf/ACQrwL/2ALP/ANErQB3dABQAUAFABQAUAfEv/BNP/kPeNv8Ar1tP/Q5aAPtqgAoAKACgAoAKACgAoAKACgAoAKACgDyPxB8OfilfeLdS13S/jJFpKXeY4bdPC8M32aHtGrvKW9yRjLc4HAABv618PZ7j/hGdV0zxBJa%2BJ/D0Rgh1S6ha6W6jdQJo54zIrOr4DD5wysAQeoIBqfDfwbb%2BDtLvEN7LqWq6nePf6rqMqBGurl8bmCDIjQABVQcKoHJOSQDk/i38MvFvjnUJ47P4jDSNCuEh36ZLocV3tljJIljldw0b5wQVwQQCDmgCf4l/DjxT4i8bW/inwv4/TwvcxaZ/Z5zokV64UuzM0bu4MZbcAduCdi5PAwAej2EMlvY29vNO1xJFEqPKwwZCAAWP160AT0AFABQAUAFABQAUAFABQAUAFABQB8yf8FHf%2BSK6L/2McP8A6TXNAHsH7Pf/ACQrwL/2ALP/ANErQB3dABQAUAFABQAUAfEn/BNV0TXvGu9lXNradTj%2BOWgD7X86H/nrH/30KADzof8AnrH/AN9CgA86H/nrH/30KADzof8AnrH/AN9CgA86H/nrH/30KADzof8AnrH/AN9CgA86H/nrH/30KADzof8AnrH/AN9CgA86H/nrH/30KADzof8AnrH/AN9CgA86H/nrH/30KADzof8AnrH/AN9CgDk/jLqEtj8IPGl7YXz2t5b6BfSwTQSlJIpFt3KsrA5DAgEEcgigD4b%2BDeiftEfFbR73VfC/xP11LeyuBby/a/Et3G24qG4AJyMGgDu/%2BFIftX/9FSvv/CrvP8KAD/hSH7V//RUr7/wq7z/CgA/4Uh%2B1f/0VK%2B/8Ku8/woAyPGXww/ag8KeFdT8Sap8UdUNlpts9zOIfFN4z7FGTgHGT%2BNAHtH7BPiXW/EXwf1W98S6/qOr3ia/NEk2oXjzyLGLe3IUM5JC5Zjjpkn1oA%2BhPOh/56x/99CgA86H/AJ6x/wDfQoAPOh/56x/99CgA86H/AJ6x/wDfQoAPOh/56x/99CgA86H/AJ6x/wDfQoAPOh/56x/99CgA86H/AJ6x/wDfQoAPOh/56x/99CgA86H/AJ6x/wDfQoAPOh/56x/99CgA86H/AJ6x/wDfQoA%2BZv8Ago1JG/wW0UK6sf8AhIoehz/y7XFAHsX7Pf8AyQrwL/2ALP8A9ErQB3dABQAUAFABQAUAfGl3%2Bw5uu5mtPiT5duXYxJLo%2B91TPAZhMATjGSAM%2BgoAi/4YauP%2BimRf%2BCQ//H6AD/hhq4/6KZF/4JD/APH6AD/hhq4/6KZF/wCCQ/8Ax%2BgA/wCGGrj/AKKZF/4JD/8AH6AD/hhq4/6KZF/4JD/8foAP%2BGGrj/opkX/gkP8A8foAP%2BGGrj/opkX/AIJD/wDH6AD/AIYauP8AopkX/gkP/wAfoAP%2BGGrj/opkX/gkP/x%2BgA/4YauP%2BimRf%2BCQ/wDx%2BgA/4YauP%2BimRf8AgkP/AMfoAP8Ahhq4/wCimRf%2BCQ//AB%2BgDG8c/sbz%2BGPBOu%2BJT8Q47saTptxfGAaOU83yo2fZu844ztxnBxnpQBs/sEePvBXhHwH4htPE/inSdHuJ9UWSKO8uVjZ18pRuAJ5GeKAPpD/hdXwk/wCijeGf/BhH/jQAf8Lq%2BEn/AEUbwz/4MI/8aAD/AIXV8JP%2BijeGf/BhH/jQBxHx8%2BLPwy1f4LeL9M0vx34fvL260meKCCG%2BRnkcqcKoB5JoA%2BW/2dP2cJfjB4JvPEqeME0UW2pPY%2BQdOM%2B7bHE%2B/d5i4/1mMY7deaAPS/8Ahhq4/wCimRf%2BCQ//AB%2BgA/4YauP%2BimRf%2BCQ//H6AD/hhq4/6KZF/4JD/APH6AD/hhq4/6KZF/wCCQ/8Ax%2BgA/wCGGrj/AKKZF/4JD/8AH6AD/hhq4/6KZF/4JD/8foAP%2BGGrj/opkX/gkP8A8foAP%2BGGrj/opkX/AIJD/wDH6AD/AIYauP8AopkX/gkP/wAfoAP%2BGGrj/opkX/gkP/x%2BgA/4YauP%2BimRf%2BCQ/wDx%2BgA/4YauP%2BimRf8AgkP/AMfoAP8Ahhq4/wCimRf%2BCQ//AB%2BgD628C%2BH4fCngzRvDNvcSXEOlWMNmksgAZxGgUMQOMnFAG1QAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBxnx1/5Ij47/wCxb1H/ANJpKAPyboAKACgAoAKAPv7/AIJx/wDJENZ/7GSf/wBJragD6ZoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAAP/Z'/%3E%0A%3C/svg%3E)
(vi) In order to produce electrons in a discharge tube the
A anode should be at a higher potential than the cathode
B potential difference at the anode should be low
C cathode should be heated indirectly at low voltage supply
D electrodes should be at the same potential
E electrons must be accelerated at higher potential.
(vii) The battery in the circuit shown in the following diagram has an e.m.f. of
2 V and negligible internal resistance.
What will be the current flowing in the 6 Ω resistor?
A 0.15 A
B 0.64 A
C 1.42 A
D 0.10 A
E 0.33 A
(viii) The image formed by plane mirrors are always
A real, magnified and laterally inverted
B virtual, laterally inverted and same in size
C magnified, virtual and erect
D laterally inverted, same in size and real
E erect, real and magnified.
(ix) Which of the following particles is used to cause fission in an atomic
reaction?
A proton
B deuteron
C neutron
D beta-particle
E alpha-particle
(x) The layer in the atmosphere where weather phenomena are formed is
called
A stratosphere
B magnetosphere
C thermosphere
D troposphere
E exosphere.